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Abstract

Amathematical model for a steady flow of blood mixed with nanoparticles through an inclined
stenosed artery having porous wall under the influence of magnetic field was developed. Here,
blood is treated as a micropolar fluid and stensosis is overlapped. The closed form expressions
for blood flow characherisitcs namely velocity, temperature and concentration distribution are
obtained by using Homotopy perturbation method (which is one the semi analytical method).
The effects of various physical cahracteristics of fluid flow on the impedence (resistance) to the
flow and wall shear stress are analysed graphically. A novel result was found that the resistance
to the fluid flow increases with the heights of the stenosis. Variation in nature of blood flow is
examined, for varying values of the permeability remains constant, Brownianmotion parameter,
angle of inclination, magnetic field intensity, and thermophoresis parameter. The study reveals
that the shear stress decreases with the increase in intensity of magnetic field, but it decreases
with increase in permeability parameter. The Steram lines are drawn to explore the flow pattern
and characteristics of momentum transfer. This theoretical study will help to understanding the
flow phenomenon in the stenosed (overlapping) arteries under magnetic and nanofluid influ-
ences, with potential applications in improving the design of biomedical devices and systems
involving fluid flow in porous media.
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motion parameter; thermophoresis parameter.
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1 Introduction

In the modern world, one of the most serious health risks is atherosclerosis, which is defined
as the narrowing of the blood vessel lumen, or the inner open space or lumen of an artery, caused
by fatty substance accumulation. This can lead to hypertension, myocardial infarction, and other
problems. As a result, stenosis develops when abnormal and irregular growth disrupts regular
blood circulation, and there is strong evidence that hydrodynamic parameters such as wall shear,
flow resistance, and so on can all play a role in the development and evolution of this medical
problem. Thus, a detailed understanding of the blood’s flow field in a stenosed tube will aid in
the accurate diagnosis and treatment of cardiovascular problems.

Given this, a number of authors have examined several mathematical models for fluid flow via
stenosed/constricted channels [34, 16]. In all of these mathematical research findings, blood flow
is defined as a fluid that is Newtonian [25]. However, Majhi and Nair [17] claimed that blood
behaves like a non-newtonian fluid according to certain conditions. Shukla et al. [26] investigated
non-Newtonian bloodflow in an arterywithmild stenosis and its effects on flowdynamics. Chatu-
rani & Samy [7] studied pulsatile flow of casson’s fluid through stenosed arteries with application
to blood flow.

Micropolar fluid is a particular kind of non-newtonian fluid. Eringen [11] proposed the con-
cept of micro-polar fluids in an effort to study the flow of non-newtonian fluids with microscopic
effects caused by micro-rotational motion and spin inertia. Prasad and Yasa [23] investigated the
micropolar fluid flow via a permeable artery using multiple stenoses. Charya [6] described the
motion of blood as micropolar fluid flow with the objective to account for the micro spin of parti-
cles in suspension. This study investigates fluid circulation with continuous constrained borders
in a non-symmetric vessel. Ellahi et al. [10] investigated micropolar fluid in composite arterial
body fluid flow. Abdullah andAmin [1] developed a nonlinear two-dimensional micropolar fluid
model to investigate blood flow in a tapering artery with stenosis. Mekheimer and Kot [19, 20]
investigated the micropolar flow of fluid model for blood circulation in tapering stenosed veins.

Nanofluid is a fluid having nano meter sized particles known as nanoparticles. Nanofluids
have been establish to possess enrich thermo physical properties like thermal diffusivity, ther-
mal conductivity, convective heat transfer coefficients, including pharmaceutical processes, fuel
cells, microelectronics and hybrid powered engine. Choi and Eastman [8] firstly introduced the
investigation on the nanofluid. Recent blood flow models include nanoparticles, which can af-
fect stenosed artery flow dynamics. Khan et al. [15] studied partial slip effects on peristaltic JS
nanofluid flow with double-diffusive convection and an induced magnetic field. Yasmin et al.
[33] examined peristaltic transport in different nanofluid models, and Bilal et al. [5] investigated
double-diffusion convection and viscous dissipation onmagneto-six-constant jeffrey nanofluids in
biological fluid flow. These studies demonstrate the increasing significance of nano-fluid models
in understanding challenging physiological processes and their medical consequences.

Magnetic fields have a critical role in the flow of blood inside the human vascular system.
MHD applications reduce bodily fluid flow rate in human blood arteries while also helping in the
treatment of certain cardiovascular disorders. Many magnetic devices have been developed for
cancer treatment, cell separation, drug delivery, and other applications. In the presence of a mag-
netic field, substantial study on biofluid mechanics was conducted (Ikbal et al. [14]). Bali and
Awasthi [4] examined the influence of an external transverse magnetic field on the flow of blood
in a stenotic artery. Tanwar et al. [29] examined the impact of a porous medium and transverse
magnetic field on bloodflow in a stenosed artery andVarshney et al. [32] investigated amathemat-
ical model to examine the impact of magnetic fields on blood circulation in arteries with multiple

768



N. Satwai et al. Malaysian J. Math. Sci. 19(3): 767–787(2025) 767 - 787

stenotic regions. He [12, 13] investigated the application of homotopy perturbation.

The magnetic fields of newtonian and non-newtonian fluids have several applications in the
fields of chemical engineering, biofluid mechanics, and other industries. A moving electrically
conducting fluid will produce both electric and magnetic fields when exposed to a magnetic field.
A body force called the Lorentz force is created when these fields interact, and it tends to oppose
the liquid’s movement (Craig and Watson [9]). Sud et al. [28] investigated how a moving mag-
netic field affected blood flow, they found that a suitable moving magnetic field accelerated blood
flow. They identified that the magnetic field’s impact can be used as a blood pump during cardiac
procedures to improve blood flow in arteries with arterial disorders such as stenosis of the arteries
or arteriosclerosis. Misra et al. [21] constructed a mathematical model to investigate blood flow
through a porous vessel exhibitingmultiple stenoses in the presence of an external magnetic field.

The influence of a porousmedium on fluid flow is important because of its applications, which
include fluid filtration, water flow in river beds, surfacewater and oil transport, physiological fluid
flow in the bile duct, and blood flow through tiny arteries. These uses prompted other researchers
to investigate flow dynamics in various geometries over porous media (Sochi [27]). The study
conducted by Prasad and Yasa [24] examined the impact of slip on on the flow of a nanofluid via
a duct that is inclined tapering stenosed artery having permeable borders. Zeeshan et al. [35]
investigated the flow of copper-suspended nanofluid through a composite stenosed artery with
permeable walls. The study conducted by Akbar et al. [2] examined the movement of nanofluid
in a narrowing artery with porous walls [30]. Mandal [18] examined non-Newtonian blood flow
in tapered arteries with stenosis, emphasizing the effects of tapering, wall motion, and the severity
of stenosis. Azmi et al. [3] studied fractional Casson fluid flow in small arteries, highlighting the
impact of slip conditions and cholesterol porosity on blood flow dynamics.

Many arteries in physiological processes are not horizontal, but rather angled toward the axis.
Vajravelu et al. [31] investigated the Herschel-Bulkley fluid’s peristaltic movement in an inclined
tube. Studying the effect of the Herschel-Bulkley model, an explanation for non-newtonian fluid
flow in tubes with multiple stenoses, could thus provide illumination on the role of fluid dynami-
cal characteristics in the development and treatment of cardiovascular disease. Many researchers
describe the stenosis asmild and single, while in reality, the stenosis is overlapping and irregularly
shaped.

This study’s innovative approach to modelling blood flow through an inclined overlapping
stenosed artery treats blood as amicropolar fluid, including complex characteristics such asmicro-
rotationalmotion and spin inertia. This varies from conventionalmodels that treat blood as aNew-
tonian fluid and simplify geometry to linear or uniform shapes. The research is more relevant to
cardiovascular diseases by adopting realistic conditions with inclined and overlapping stenoses.
The addition of nanoparticles to the blood flow model develops medical uses like targeted drug
delivery and hyperthermia treatment, while magnetic field effects relate magnetohydrodynamics
(MHD) to blood circulation dynamics, possibly leading to new treatment methods. The Homo-
topy Perturbation method (HPM) for analytical solutions introduces an original mathematical
framework and shows its efficacy in biomedical nonlinear fluid dynamics issues. This discovery
greatly improves our understanding of blood flow dynamics in stenosed arteries and provides
novel avenues for research and treatment.

Motivated from the above studies a mathematical model has been developed for fluid flow
across an inclined overlapping stenosed artery with the effect of amagnetic field through a porous
medium. Blood is considered as a micropolar fluid with nanoparticles.
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2 Mathematical Formulation

A cylindrical coordinate system (r, θ, z) with r = 0 as the cylinder’s axis of symmetry is ex-
plored, where the z-axis runs parallel to the artery’s axis. Consider the flow of a micropolar fluid
across an inclined artery with overlapping stenoses, characterized by fluid viscosity µ and density
ρ.

Figure 1: Schematic diagram of an inclined duct with overlapping stenoses.

Assuming the stenosis is to bemild and develops axially symmetrically . The cylindrical tube’s
radius is defined as,

h =
R(z)

R0
=


1− 3

2

δ

R0(L0)
4

(
11(z − d)(L0)

3 − 47(z − d)2(L0)
2

+72(z − d)3(L0)− 36(z − d)4
)
, d ≤ z ≤ d+ L0,

1, otherwise.
(1)

The tube radius with narrowing is denoted by R (z), while R0(z) represents the tube radius
without narrowing. The stenosis length is denoted by L0 and its location is represented by d. The
maximum height of the stenoses situated at two locations z is denoted by δ. The first location is
z = d+

L0

6
, and the second location is z = d+

5L0

6
. The critical height is determined to be 3δ

4
at

z = d+
L0

2
, measured from the origin. (Figure 1)

The mild stenosis approximation,
(

δ

R0
≪ 1, Re (2δ/L0) ≪ 1 and 2R0 /L0 (1)

)
are defined in

Prasad et al. [22]. Accordingly, these are the governing equations for the fluid flow (Prasad et al.
[24]):

∂wr

∂r
+
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+

∂wz
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= 0, (2)
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, (3)
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, (4)

ρ j

(
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(
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∂z2

)
. (5)

Here, p, ρ, j, K, µ, F , are fluid pressure, velocity vector, micro rotation vector, fluid density,
micro gyration parameter, porousmedium’s permeability, viscocity, body force respectively. J̄×B̄
is lorentz force term in magnetohydrodynamics( J̄ : current density vector and B̄: magnetic field
vector).

Here, W = (wr, 0, wz) and V = (0, vθ, 0) are respectively the velocity and microrotation vec-
tors. The non-dimensional variables are:
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δ
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,
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3
0
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3
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0B
2
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.

Apply the mild stenosis approximation,
(

δ

R0
≪ 1, Re (2δ/L0) ≪ 1 and 2R0 /L0 (1)

)
defined

in Prasad et al. [22]. Hence, (2)-(5) becomes,
∂P
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= − sin (α)

F
, (6)
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+
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(
1

r

∂

∂r

(
r
∂θ
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))
= 0. (10)

The axial velocity, denoted byw, has a radius ofR0. The temperature profile, nanoparticle phe-
nomena, local temperature, and local nanoparticle Grashof numbers, Brownian motion number,
Thermophoresis parameter, micropolar parameter and coupling number are represented by θ, σ,
Br, Gr, Nb, Nt, m and N . Additionally, M = σ B2

0 is the magnetic parameter, µ is the viscosity,
and k is the porous medium’s permeability.

The following are the non-Dimensional boundary conditions:
w = 0, Vθ = 0, θ = 0, σ = 0, at r = h (z) , (11)

∂w

∂r
= 0,

∂θ

∂r
= 0,

∂σ

∂r
= 0, at r = 0, (12)
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Vθ is finite at r = h(z). (13)

3 Method of Solution

The solution of the coupled (9) and (10) have been calculated by the Homotopy perturbation
method (HPM) as [23],

H (q, θ) = (1− q) [L (θ)− L (θ10)] + q

[
L (θ) +Nb

∂σ

∂r
· ∂θ
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∂r

)2
]
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]
, (15)
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L (σ) +
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(
1

r

∂
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(
r
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H (q, σ) = L (σ)− L (σ10) + qL (σ10) + q

[
Nt

Nb

(
1

r

∂

∂r

(
r
∂θ
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))]
, (17)

where the embedding parameter q is defined as,
0 ≤ q ≤ 1.

The linear operator L is given by,

L ≡ 1

r

∂

∂r

(
r · ∂

∂r

)
, θ0 (r, z) =

(
r2 − h2

4

)
, σ0 (r, z) = −

(
r2 − h2

4

)
. (18)

Define,
θ (r, z) = θ0 + qθ1 + q2θ2 + . . . , (19)
σ (r, z) = σ0 + qσ1 + q2σ2 + . . . . (20)

Convergence of (19) and (20) depend on the non-linear part of the expression. Adopting the same
procedure as done by (27), the solution for temperature profile (θ) and nanoparticle phenomenon
(σ) for q = 1 are,

θ (r, z) =
1

64
(Nb −Nt)

(
r2 − h2

)
−
(

1

18
Nb
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+
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36864
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b +N2
t

) (
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(21)
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+
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1

18
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+

1
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(
N2

b +N2
t

) (
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))
. (22)

Substituting (21) and (22) in (7), and applying boundary conditions,
∂
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1
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)
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1
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1
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From (21), (22) and (8), expression for Vθ can be written as,
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+
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r
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1
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From (24), Vθ is,

Vθ = C2 (z) I1 (mr) + C3 (z)K1 (mr)− (1−N) r
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where I1 (mr) and K1 (mr) are respectively the first and second order modified Bessel functions.
Substitute (25) in (23), and by applying boundary conditions (11)-(13), the velocity is,
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where
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×
(

1

2m4
+

h2

6m2
− h4

60

)
−

GrNb

(
N2

b +N2
t

)
36864

(
7372800h

m10
+

921600h3

m8
+

37248h5

m6
+

624h7

m4

+
7h11

24

)
− BrNt

Nb

(
h

2m2
− h3

16

)
+BrNt

(
1

2m4
+

h2

6m2
− h4

60

)
+

Br

(
N2

b +Nv
t

)
36864

Nt

Nb
×(

1152h

m6
+

144h3

m4
+

6h5

m2
− 3h7

8

))]
.

Dimension less flux(q) can be determined as follows:

q =

∫ h

0

2rw dr, (27)

q =

[(
Nh2

m

I0 (mh)

I1 (mh)
− 2Nh

m

)
+

(
µ
k +M

)
(2−N)

(
N

m

I0 (mh)

I1 (mh)

h4

4
− Nh3

m
+

2Nh2

m

I2 (mh)

I1 (mh)

)(
(1−N)

(2−N)

×
(
dP

dz
− sin [α]

F

)
h

2
− (1−N)

(2−N)

(
Gr (Nb −Nt)

(
h

32m2
− h3

256

)
−GrNb

(
1

2m4
+

h2

6m2
− h4

60

)
−

GrNt

(
N2

b +N2
t

)
36864

(
7372800h

m10
+

37248h5

m6
+

624h7

m4
+

7h11

24
+

921600h3

m8

)
− BrNt

Nb

(
h

2m2

−h3

16

)
+BrNt

(
1

2m4
+

h2

6m2
− h4

60

)
+

(
1152h

m6
+

144h3

m4
+

6h5

m2
− 3h7

8

)
Br

(
N2

b +N2
t

)
36864

×(
Nt

Nb

)))]
+

(1−N)

(2−N)

(
−h4

4
− h6

24

(
µ
k +M

)
(2−N)

)(
dP

dz
− sinα

F

)
− (1−N)

(2−N)

[
Gr (Nb −Nt)×((

−Nh4

128m2
+

379h6

1536

)
+

(
−Nh6

768m2
+

755h6

12288

) (µ
k +M

)
(2−N)

)
−GrNb

((
−Nh3

6m4
− Nh5

30m2
+

3h7

280

)
+

(
−Nh5

40m4
− Nh7

168m2
+

11h9

6480

) (µ
k +M

)
(2−N)

)
−

GrNt

(
N2

t +N2
b

)
36864

((
−1843200Nh4

m10
− 153600Nh6

m8

− 2255Nh8

m6
− 24Nh10

m4
+

7Nh12

24m2
− 73h14

210

)
+

(
−307200Nh6

m10
− 28800Nh8

m8
− 912Nh6

m6

−65Nh12

6m4
+

27Nh14

280m2
− 59h16
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) (µ
k +m

)
(2−N)

)
− BrNt

Nb

((
−Nh4

8m2
+

31h4
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)
+

(
−Nh6

48m2
+

59h8
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)
×
(
µ
k +M

)
(2−N)

)
+BrNt

((
−Nh3

6m4
− Nh5

30m2
+

3h7

280

)
+

(
−Nh5

40m4
− Nh7

168m2
+

11h9

6480

) (µ
k +M

)
(2−N)

)
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+
Br

(
N2

t +N2
b

)
36864

(
Nt

Nb

)((
−288Nh4

m6
− 24Nh6

m4
− 3Nh8

4m2
+

19h10

80

)
+

(
−48Nh6

m6
− 9Nh8

2m4

−3Nh10

20m2
+

h12

32

) (µ
k +M

)
(2−N)

)]
. (28)

From (28), dP
dz

is,

dP

dz
=

sin [α]

F
+

 1((
Nh3

2m
I0(mh)
I1(mh) −

Nh2

m − h4

4

)
+
(

N
m ∗ I0(mh)

I1(mh)
h5

8 − Nh4

2m − Nh3

m ∗ I2(mh)
I1(mh) −

h6

24

)( µ
κ+M

(2−N)

))


×
(
q (2−N)

(1−N)
+

((
Nh2

2m
∗ I0 (mh)

I1 (mh)
− 2Nh

m

)
+

(
N

m
∗ I0 (mh)

I1 (mh)

h4

4
− Nh3

m
− 2Nh2

m

I2 (mh)

I1 (mh)

)
×

((
µ
κ +M

)
(2−N)

))(
Gr (Nb −Nt)

(
h

32m2
− h3

256

)
−GrNb

(
1

2m4
+

h2

6m2
− h4

60

)
−

GrNt

(
N2

b +N2
t

)
36864

(
7372800h

m10
+

37248h5

m6
+

624h7

m4
+

7h11

24
+

921600h3

m8

)
− BrNt

Nb
×(

h

2m2
− h3

16

)
+BrNt

(
1

2m4
+

h2

6m2
− h4

60

)
+
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(
N2

b +N2
t

)
36864

(
Nt

Nb

)(
1152h

m6
+

144h3

m4

+
6h5

m2
− 3h7

8

))
+

(
Gr (Nb −Nt)

((
−Nh4

128m2
+

379h6

1536

)
+

(
−Nh6

768m2
+

755h6

12288

) (µ
k +M

)
(2−N)

)
−GrNb

((
−Nh3

6m4
− Nh5

30m2
+

3h7

280

)
+

(
−Nh5

40m4
− Nh7

168m2
+

11h9

6480

) (µ
k +M

)
(2−N)

)
− BrNt

Nb
×((

−Nh4

8m2
+

31h4
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)
+

(
−Nh6

48m2
+

59h8
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) (µ
k +M

)
(2−N)

)
−

GrNt

(
N2

t +N2
b

)
36864

((
−1843200Nh4

m10

− 153600Nh6

m8
− 2255Nh8

m6
− 24Nh10

m4
+

7Nh12

24m2
− 73h14

210

)
+

(
−307200Nh6

m10
− 28800Nh8

m8

−912Nh6

m6
− 65Nh12

6m4
+

27Nh14

280m2
− 59h16

1920

) (µ
k +m

)
(2−N)

)
+BrNt

((
−Nh3

6m4
− Nh5

30m2
+

3h7

280

)
+

(
−Nh5

40m4
− Nh7

168m2
+

11h9

6480

) (µ
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)
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)
+
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(
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t +N2
b

)
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(
Nt

Nb

)((
−288Nh4

m6
− 24Nh6

m4

−3Nh8

4m2
+

19h10

80

)
+

(
−48Nh6

m6
− 9Nh8

2m4
− 3Nh10

20m2
+

h12

32

) (µ
k +M

)
(2−N)

)))
. (29)

The pressure drop per wave length ∆p = p(0)− p(λ),

∆p = −
∫ 1

0

dP

dz
dz,

∆p = −
∫ 1

0

[
sin [α]

F
+ 1((

Nh3

2m
I0(mh)
I1(mh) −

Nh2

m − h4

4

)
+
(

N
m ∗ I0(mh)

I1(mh)
h5

8 − Nh4

2m − Nh3

m ∗ I2(mh)
I1(mh) −

h6

24

)( µ
κ+M

(2−N)

))
×

(
q (2−N)

(1−N)
+

((
Nh2

2m
∗ I0 (mh)

I1 (mh)
− 2Nh

m

)
+

(
N

m
∗ I0 (mh)

I1 (mh)

h4

4
− Nh3

m
− 2Nh2

m

I2 (mh)

I1 (mh)

)
×
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((
µ
κ +M

)
(2−N)

))(
Gr (Nb −Nt)
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+
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−
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)
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(
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+
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+
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)
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+
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+
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)
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(
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)(
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+

144h3
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+
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8

))
+

(
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((
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+
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)
+

(
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+

755h6
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) (µ
k +M

)
(2−N)

)
−GrNb

((
−Nh3

6m4
− Nh5

30m2
+

3h7

280

)
+

(
−Nh5

40m4
− Nh7

168m2
+

11h9
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) (µ
k +M

)
(2−N)

)
− BrNt

Nb
×((
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8m2
+

31h4

192

)
+

(
−Nh6

48m2
+

59h8
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) (µ
k +M

)
(2−N)

)
−

GrNt

(
N2

t +N2
b

)
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((
−1843200Nh4
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− 153600Nh6

m8
− 2255Nh8

m6
− 24Nh10

m4
+
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24m2
− 73h14
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)
+

(
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− 28800Nh8

m8
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+
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− 59h16
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)
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((
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30m2
+

3h7
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)
+

(
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+
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)
+
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(
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b

)
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(
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)((
−288Nh4

m6
− 24Nh6

m4

−3Nh8

4m2
+

19h10
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)
+

(
−48Nh6

m6
− 9Nh8

2m4
− 3Nh10

20m2
+

h12

32

) (µ
k +M

)
(2−N)

)))]
dz. (30)

Also, flow resistance λ is defined as,

λ =
∆p

q
,

λ =
−1

q

∫ 1

0

[
sin [α]

F
+ 1((

Nh3

2m
I0(mh)
I1(mh) −

Nh2

m − h4

4

)
+
(

N
m ∗ I0(mh)

I1(mh)
h5

8 − Nh4

2m − Nh3

m ∗ I2(mh)
I1(mh) −

h6

24

)( µ
κ+M

(2−N)

))
×

(
q (2−N)

(1−N)
+

((
Nh2

2m
∗ I0 (mh)

I1 (mh)
− 2Nh

m

)
+

(
N

m
∗ I0 (mh)

I1 (mh)

h4

4
− Nh3

m
− 2Nh2

m

I2 (mh)

I1 (mh)

)
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µ
κ +M
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))(
Gr (Nb −Nt)

(
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)
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(
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+
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− h4
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)
−
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(
N2

b +N2
t

)
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(
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+
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+
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m4
+
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+
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m8

)
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×(
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)
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(
1
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+
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)
+
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(
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t

)
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(
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Nb

)(
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m6
+

144h3

m4

+
6h5

m2
− 3h7

8

))
+

(
Gr (Nb −Nt)

((
−Nh4

128m2
+

379h6

1536

)
+

(
−Nh6
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+

755h6

12288

) (µ
k +M

)
(2−N)

)
−GrNb

((
−Nh3

6m4
− Nh5

30m2
+

3h7

280

)
+

(
−Nh5

40m4
− Nh7
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+

11h9

6480

) (µ
k +M

)
(2−N)

)
− BrNt

Nb
×
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((
−Nh4

8m2
+

31h4
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)
+

(
−Nh6

48m2
+

59h8
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) (µ
k +M

)
(2−N)

)
−
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(
N2
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)
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((
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+
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+
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+
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+
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+
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+
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+
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+
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+
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+
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)))]
dz. (31)

Equation ∆p is used to calculate the pressure drop when there is no stenosis h = 1, which is
indicated by ∆pn,

∆pn = −
∫ 1

0

[
sin [α]

F
+

 1((
N
2m

I0(m)
I1(m) −

N
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)
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(
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+
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1

4
− N

m
− 2N

m

I2 (m)
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+

37248

m6
+

624

m4
+
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+
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+
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+
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(32)

The normal artery’s flow resistance is represented by,

λn =
∆pn
q

,
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λn =
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+
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+
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+
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+
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(33)

The normalized flow resistance denoted by,

λ̄ =
λ

λn
. (34)

Dimensionless shear stresses can be determine as follows,

τrz =
1

(1−N)

∂ w

∂ r
+

N

(1−N)
Vθ, (35)

τzr =
∂ w

∂ r
− 1
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Vθ, (36)

τh = τ rz =
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. (39)

4 Results and Discussion

The pressure drop, flow resistance, and wall shear stress are represented by (30), (34) and
(37), respectively. The impact of various flow parameters on flow impandance, velocity profiles
and shear stress have been analysed. Mathematica is used to generate all graphs, by taking:

d = 0.2, L = 1, B1 = 0.7, q = 0.3, F = 0.3, B = 1, N = 0.1, L0 = 0.4,

α =
π

6
, Gr = 0.2, Br = 0.3, Nt = 0.8, Nb = 0.3, K = 0.05, β = 0.01.

From Figures 2–9, it is observed that when heights of the stenosis increases, the flow resistance
also increases because the height of the the stenosis increases it disturbs flow pattern and velocity
of the fluid decreases and the resistance to the flow increases.

It is also noticed from Figures 2–9 that, the flow resistance (λ̄) also increases with various pa-
rameters like Inclination (α), Magnetic parameter (M), Permeability of porous medium (k), Lo-
cal temperature Grashof number (Gr), Thermophoresis parameter (Nt) and Local nano-particle
Grashof number (Br) but decreaseswith Brownianmotionparameter (Nb) andThePorousmedium’s
permeability (k).

From Figure 8, it is interesting to note that the resistance to the flow increases with increase
in Magnetic parameter (M), However, it is noticed that this increase is significant only when the
height of the stenosis (δ) exceeds the value 0.05. Similarly, with rise of local temperature Grashof
number (Gr), the resistance to the flow increased Figure 5 i.e when nano fluid particles involved
in motion of the fluid particles, buoyance forces are dominated the viscous forces because of tem-
perature variations.
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From Figure 7, it is interesting to notice that the resistance to the flow increases with height
of the stenosis and permeability (k). This increase is significant when height of the stenosis (δ)
exceeds the value 0.03. i.e, in small arties, the permeability effect is less when compared with the
deposition of plaques.

From Figures 6 and 9, it is observed that the resistance to the flow increases with Brownian
motion parameter and viscosity i.e, when collision between molecules reduces the velocity of the
fluid, it causes the flow resistance increases. While permeability impacts the ease of blood flow
through porous tissues. By controlling these parameters, blood flow can be optimized, especially
in systems like vascular networks or drug delivery systems.

Applying a magnetic field in the flow phenomena and the heights of the stenoses increases,
the resistance also increases. However, by adjusting the magnetic field appropriately, it becomes
possible to control blood pressure and improve conditions such as poor circulation.

The nano fluid particles are involved in the motion of the fluid. These nano fluid particles will
enhance the thermal properties (i.e), collision between the molecules increases, but the resistance
of the flow increases. The local nanoparticle Grashof number is linked to buoyancy effects caused
by temperature variations, while permeability impacts the ease of blood flow through porous
tissues. By controlling these parameters, blood flow can be optimized, especially in systems like
vascular networks or drug delivery systems.

Figures 10–16 demonstrate the effect of velocity profiles for different values of Brownianmotion
number (Nb), Local temperature Grashof number (Gr), Thermophoresis parameter (Nt), Local
Nanoparticle Grashof number (Br), Magnetic parameter (M), Viscosity (µ) and Permeability of
porous medium (k).

It is noted that the velocity profiles increase with the increase of Local nanoparticle Grashof
number (Br), Local temperature Grashof number (Gr), Thermophoresis parameter (Nt), Perme-
ability of porousmedium (k) but decreases with the increasing ofMagnetic parameter (M), Brow-
nian motion parameter (Nb). It is interesting to observe that, the effect velocity profile with the
increase of Viscosity (µ) is decreasing in the region -0.5 to 0.5 and increasing in the other region.

Figures 17–24 demonstrates the effects of height of the stenoses (δ) on the wall shear stress (τh)
for different values of Brownian motion number (Nb), local temperature Grashof number (Gr),
Thermophoresis parameter (Nt), Local nanoparticle Grashof number (Br), Magnetic parameter
(M), Inclination (α), and The porous medium’s permeability (k).

It is noticed that the Local temperatureGrashof number (Gr), Local nanoparticle Grashof num-
ber (Br) and decrease with the wall shear stress (τh) and Brownian motion parameter (Nb), Incli-
nation (α), Permeability of porous medium (k), increases with the wall shear stress (τh).

The effects of the Magnetic parameter (M), Thermophoresis parameter (Nt), and Viscosity (µ)
help reducewall shear stress, which can be beneficial in systemswhere excessive shear stress could
cause damage. This is particularly important in the human circulatory system and in sensitive
microfluidic devices, where maintaining optimal shear stress is crucial for preventing harm to
tissues and ensuring efficient fluid flow.
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Figure 2: Effect of δ on λ̄with α varying. Figure 3: Effect of δ on λ̄withGr varying.

Figure 4: Effect of δ on λ̄withNt varying. Figure 5: Effect of δ on λ̄withBr varying.

Figure 6: Effect of δ on λ̄withNb varying. Figure 7: Effect of δ on λ̄with k varying.

Figure 8: Effect of δ on λ̄withM varying. Figure 9: Effect of δ on λ̄with µ varying.
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Figure 10: Variation of w withBr . Figure 11: Variation of w withGr .

Figure 12: Variation of w withNt. Figure 13: Variation of w with k.

Figure 14: Variation of w withNb. Figure 15: Variation of w with µ.

Figure 16: Variation of w withM . Figure 17: Effect of δ on τh with k varying.
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Figure 18: Effect of δ on τh withBr varying. Figure 19: Effect of δ on τh withGr varying.

Figure 20: Effect of δ on τh withNb varying. Figure 21: Effect of δ on τh with α varying.

Figure 22: Effect of δ on τh withNt varying. Figure 23: Effect of δ on τh with µ varying.

Figure 24: Effect of δ on τh withM varying.
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Figures 25–26 displays the streamlines for various values of the magnetic parameter (M), per-
meability of porousmedium (k). It is seen that, the streamlines in themiddle are becomingwiden,
it shows that the blood velocity is increasing and these reduces the resistance to flow decreases
with the increase in values ofM, k.

Figure 25: Streamlines forM = 8.5, 9.0 and 9.5.

Figure 26: . Streamlines for k = 0.04, 0.05 and 0.06.

5 Conclusions

The influence ofmagnetic filed on amicropolar fluid through an inclined porousmediumwith
overlapping stenoses has been studied. It was possible to evaluate the impact of various factors
with different stenosis heights on the flow impandance and shear stress at the wall by finding
solutions to the flow characteristic expressions.

The observations are:

• The Magnetic parameter, Local nanoparticle Grashof number, Thermophoresis parameter,
Local temperature Grashof number increases with flow resistance.

• The axial velocity profiles increase for with the increase of Local nanoparticle Grashof num-
ber, Local temperature Grashof number, Thermophoresis parameter, Permeability of porous
medium but decreases with the increasing of Brownian motion parameter.
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• It is identified that the effect of velocity profilewith the increase of Viscosity (µ) is decreasing
in the region -0.5 to 0.5 and increasing in the other region.

• The study concludes that varying the intensity of the external magnetic field allows for the
regulation of blood flow and shear stress, which can be tailored to desirable levels. This in-
sight can have important clinical applications, particularly in themanagement and treatment
of cardiovascular diseases such as hypertension, high blood pressure, and atherosclerosis.
By controlling the magnetic field, it may be possible to reduce the harmful effects of these
diseases by controlling blood flow and the forces acting on blood vessel walls.

• The stream lines gradually narrow as the Magnetic parameter (M) and the Permeability of
the porous medium (k) increase.

• In addition to the existing findings, we propose several potential extensions to this work.
First, the problem could be extended by considering a curved tube geometry, which would
more accurately depict flow conditions in systems having curved channels, such heat ex-
changers or blood vessels.

• The present study considers overlapping stenoses in a simplified form. More complex and
inconsistent stenosis patterns that may be found in actual biological or engineering systems
could be the subject of future studies. Deeper understanding of the behavior of nanofluids
under stenotic conditionsmay be possiblewith themodel’s incorporation of hybrid nanopar-
ticles.
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